بررسی خصوصیات ناپوستگی‌ها به منظور تولید مدل شبکه گسترش‌کننده - مطالعه موردی: مغار نیروگاه تلچه‌های ذخیره‌ای رودبار لرستان

عباس کمالی 1
کورش شهیاری 2
مصطفی شریف زاده 3
پرویز معمار ونده 4

چکیده
یکی از مهم‌ترین روش‌های مطالعه تأثیر سیستم ناپوستگی‌ها بر روی توده سنگ، تولید مدل شبکه گسترش‌کننده شکستگی بر مبنای خصوصیات هندسی و فیزیکی آن‌ها است. در این مقاله خصوصیات ناپوستگی‌ها برداشت‌شده به‌وسیله روش‌های تجربیاتی و سطحی مربوط به مغار نیروگاه طرح رودبار مورد بررسی قرار گرفته است. بر اساس تحلیل‌های انجام شده و تصمیم انتخاب سوی فاکتوری (اریب)، یک لاپرادی به همراه سه دسته درده در منطقه وجود دارد. عامل‌های تکنولوژی و رستای نشان‌های اصلی در منطقه سبب شده است که برای هر یک از خصوصیات طول اثر و فاقداری، تابع چگالی احتمال آن‌ها با توجه به زنیک دسته دردها با یکدیگر متفاوت باشد. نتایج خواص فیزیکی دسته دردها نیز موجب این موضوع است. میانگین طول اثر محاسبه شده به روش خط برداشت و روش سطحی برای یک دسته درده کاملاً به هم تزیید و برای دسته دزره دیگر درصد متفاوت است. اختلاف چگالی واقعی بین پنجره‌های احرازی و مستندی برای دسته‌های و 1 دارای 15 درصد است.

واژه‌های کلیدی
ناپوستگی‌ها، خصوصیات هندسی و فیزیکی، مغار، تلچه‌های ذخیره‌ای رودبار لرستان

1. دانشجوی دوره دکتری مکانیک سیستم‌های دانشکده معدن و مالاروزی دانشگاه صنعتی امیرکبیر، تهران، ایران.
2. استاد دانشکده معدن و مالاروزی، دانشگاه صنعتی امیرکبیر، تهران، ایران. k.shahriar@aut.ac.ir
3. دانشیار دانشکده معدن و مالاروزی مدرسه معدن استرالیای غربی، دانشگاه کریستن، استرالیا.
4. دانشیار دانشکده معدن و مالاروزی دانشگاه صنعتی امیرکبیر، تهران، ایران.

تاریخ دریافت: 1395/10/07
تاریخ پذیرش: 1395/05/30
مقدمه

ناپیوندگی های موجود در توده سنگ تأثیر بسزایی بر روی تغییر شکل، مقاومت، رابطه تشکیل و کشنده و شکست توده سنگ دارد (این و همکاران، ۲۰۱۲). بنابراین به‌عنوان بررسی فناوری تولید مدل شبکه کشنده و شکستگی، شیعه ای می‌تواند در تولید سنگ‌های نابودی ناپیوندگی‌ها را به‌عنوان یک ابزاری پیش‌بینی برخورد است. خدمات‌های هندسی و فیزیکی ناپیوندگی‌ها، شیعه ای می‌تواند در کنار این روش‌ها و در زمینه‌های نمونه‌برداری، خاک و صنعتی (داری‌های و مستندنی) مورد بررسی قرار گردد. از خدمات‌های مکانیکی مورد نیاز به تولیدی مفهومی مورد استفاده و تکنولوژی‌های جدید و دلیل وجود یک دسته‌بندی منطقه‌ای به دلیل وجود پهن‌تر دسته‌بندی اشاره نمود.

مواد و روش‌ها

مهم‌ترین مرجع بررسی انجام‌شده و تغییر شکل و پایداری توده سنگ، تعیین دقیق ناپیوندگی‌ها (سابقه مدل هندسی) بر اساس خصوصیات هندسی بایان شده در جدول (۱) است. بنابراین درک صحیح و رشد مدل‌ها و روش‌های تولید ناپیوندگی‌ها برای ساخت صنایع هندسی و فیزیکی ناپیوندگی‌ها برای ساخت مدل‌های هندسی و مکانیکی توده سنگ لازم است. مدل‌های هندسی توده سنگ شاخص اندازه بلکه، شکل بلکه، قفل شدن بلکه، انتقال ناپیوندگی‌ها و طبقه‌بندی ساختاری توده سنگ هستند. از این رو محاسبه دقیق سه‌بعدی ساختار توده سنگ همیشه از جمله مهم‌ترین محققین است. در این راستا شبکه کشک‌سازی (DFN)، می‌تواند سیستم شبکه توده سنگ را به روش‌های امروزی مدل سازی نماید. مدل DFN با ایجاد یک
چهره‌ی رودبار‌های سلسله‌ی قاره‌ای در ایجاد شرایط نوین گردیده است. این شرایط نوین با سطح زیردریایی و گستره‌ای در مقابل سطح زیردریایی و دستگاه‌های پشتیبانی، می‌تواند به ایجاد شرایط نوین باعث شود.

جدول (1): طبقه‌بندی خصوصیات اصلی توده سیبک به‌منظور تولید مدل‌های DFN (شریف‌زاده، 2015)

<table>
<thead>
<tr>
<th>خصوصیات هندسی (تاپیوسکتی‌های زون و شیب)</th>
<th>خصوصیات توده سیبک</th>
<th>شرایط اولیه و مزری توده سیبک</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیب و زون</td>
<td>طول ناپیوسکتی‌های صفحه (تداوم)</td>
<td>فشار آب زیرزمینی</td>
</tr>
<tr>
<td>فشار بار</td>
<td>طول ناپیوسکتی‌های صفحه (تداوم)</td>
<td>شست سطحی و حجمی</td>
</tr>
<tr>
<td>نشانه‌های خاک‌شناسی</td>
<td>طول ناپیوسکتی‌های صفحه (تداوم)</td>
<td>مقاومت دیواره</td>
</tr>
<tr>
<td>محل</td>
<td>طول ناپیوسکتی‌های صفحه (تداوم)</td>
<td>آب محبوس و نفوذپذیری</td>
</tr>
<tr>
<td>زنگی</td>
<td>طول ناپیوسکتی‌های صفحه (تداوم)</td>
<td>شکل (اندازه)</td>
</tr>
<tr>
<td>مقاومت دیواره</td>
<td>طول ناپیوسکتی‌های صفحه (تداوم)</td>
<td>قطر (اندازه)</td>
</tr>
<tr>
<td>شکل</td>
<td>طول ناپیوسکتی‌های صفحه (تداوم)</td>
<td>شتر سطحی و حجمی</td>
</tr>
<tr>
<td>محل</td>
<td>طول ناپیوسکتی‌های صفحه (تداوم)</td>
<td>شدت سطحی و حجمی</td>
</tr>
<tr>
<td>زنگی</td>
<td>طول ناپیوسکتی‌های صفحه (تداوم)</td>
<td>مقاومت دیواره</td>
</tr>
<tr>
<td>محل</td>
<td>طول ناپیوسکتی‌های صفحه (تداوم)</td>
<td>آب محبوس و نفوذپذیری</td>
</tr>
<tr>
<td>شکل</td>
<td>طول ناپیوسکتی‌های صفحه (تداوم)</td>
<td>قطر (اندازه)</td>
</tr>
<tr>
<td>شکل</td>
<td>طول ناپیوسکتی‌های صفحه (تداوم)</td>
<td>شکل (اندازه)</td>
</tr>
</tbody>
</table>

زمین‌شناسی و زمین‌ساخت: منطقه

نیروگاه ختم‌نامه‌ی مخزنهای یویسیر (۱۳۵۵) به‌منظور تولید برق موردنیاز شبکه‌سازی‌پر در این قسمت از مرزهای ایران و ترکیه می‌باشد. این منطقه در دامنه‌های دو رودخانه گیارا و ایلیک در این منطقه است. این رودخانه‌ها در دامنه‌های دو رودخانه گیارا و ایلیک، در منطقه‌ی استان کرمان، ایجاد می‌شوند. این منطقه در دامنه‌های دو رودخانه گیارا و ایلیک، در منطقه‌ی استان کرمان، ایجاد می‌شود. در این منطقه، میدان‌های سیبک، ایجاد شرایط نوین تولید توده‌ای خشک و

1 Tectonic
2 Outcrop
بررسی خصوصیات نابیوسکی‌ها به منظور تولید مدل شبکه شکستگی گزارش زمین‌شناسی مهندسی طرح ۱۳۹۲

قابل محسوس نبوده واکنش تعمیم شدت خطی وجود دارد. بنابراین، روشنی می‌تواند تحت تأثیر ارتباط جهت‌داری، ارتباط انداز، ارتباط نقطه‌ای و زاویه‌ای بین انتهای ارتباط نابیوسکی قرار گیرد. اطلاعات دویدی شکستگی نسبت به خط توزیع است. نمودارهای سطحی (روش پنج‌گانه و دایره‌ای) اطلاعات دویدی شکستگی نظیر چگالی و همچنین شدت سطحی را فراهم می‌نمایند (زیبایی گزارش‌های روسی جهت توزیع نواحی در امتداد بندال و همکاران، ۲۰۱۲). نیز دارای تمام خط‌ها به غیر از خط اندام ارجاع است. جهت بررسی و برآورده این خصوصیات هندسی و مکانیکی نابیوسکی‌ها در محدوده مصرف نیروگاه از نمونه‌برداری به روش‌های خط توزیع، نمودارهای سطحی شامل دایره‌ای و پنج‌گانه (مستطیلی و اسپولی) استفاده شده است. در سطح مزار یک تونل به ابعاد ۶ در ۶ متر با مقطع نعل اسپولی به طول ۱۲۰ متر به عنوان گزارش اکتشافی حفاری شده است. همچنین گزارش توزیع به ابعاد ۳ (عرض) در ۴ (ارتفاع) متر با مقطع نعل اسپولی به طول ۱۴۵ متر به صورت پراویزی در فاصله ۲۵ متری از محوار مغازه و ۳۰ متری بالاتر از سطح مغازه شده است (شکل ۱).

عملیات صحرایی بمنظور برداشت خصوصیات نابیوسکی‌ها

جهت نتایج برآوردهای هندسی و مکانیکی نابیوسکی‌ها در رختن‌ها از روی‌های خط توزیع، نمودارهای دایره‌ای یا مستطیلی استفاده می‌شود. روش خط توزیع نیروگاه گسترده استفاده شده و امکان آلاینده سریع از خصوصیات شکستگی‌ها فراهم می‌کند. با این روش چگالی شکستگی

شکل (۱): پلان طرح نیروگاه تخمین ذخیره‌ای رودخانه لرستان و نقشه زمین‌شناسی طرح محدوده طرح به همراه عوارض ساختمانی نیروگاه، گزارش توزیع پراویزی نیروگاه و موقعیت برداشت نابیوسکی‌ها (گزارش زمین‌شناسی مهندسی طرح ۱۳۹۲)

\[2\] Zeeb
\[1\] Segment
شکل (2): مدل زمین‌شناسی ساختمانی شماتیک (در راستای شمالشرق-جنوب غرب) از محدوده طرح (گزارش زمین‌شناسی مهندسی طرح ۱۳۹۲)

یکی از معایب اندازه‌گیری خصوصیات نیایسیستگی‌ها در سطوح سنگی وجود نواحی سبز ویا در اثر عملیات آتش‌باری و پوشیدن شدن سطوح توسط خاک و گیاه است. از این روش‌ها به‌منظور رفع مشکل بالا کلیه سطوح نیایسیستگی توسط آب با فشار مناسب شسته شده است (شکل ۴).

جایی بیشتر نیایسیستگی‌ها در موقعیت‌های بالا از ۱۱ خط برداشت با طول هزینه ۱۰–۱۴ متر مستقیم شده است. به طول کل خطوط برداشت برای شماره‌های ۱۱-۱۴ متر است. ضمناً از ۱۵ نمونه برداشت دارای هیچ شماره با شماره ۷۰ ساعت ساخته شده است و ۲/۱۰ متر نیز استفاده شده است. این نتایج شده است. طبق تحقیقات انجام شده توسط بی‌پای (۱۹۷۸) نسبت ابعاد نیایسیستگی طول اثر برای برداشت با ۷/۲۰ بوده است. این اشتباه از قبیل شده است. در شکل (۳) نمونه‌برداری دارای مقدار ۳ متر در موقعیت خط برداشت نشان داده شده است. یا حکایت از محل نمونه‌برداری سطحی در محل خط برداشت با در نظر کشی آن باشد. موقعیت و راستای خشک بودن خط برداشت طوری انتخاب شده‌است.

1 Weiss
2 Analysis of Variance
3 Bedding Plane Joint
بررسی خصوصیات ناپیوستگی‌ها از نظر توده مدل شبکه گسترش شکستگی...\(\text{41}\)

قرار گرفتن دو روانی از موضوع یک از ضعف‌های روشهای نمونه‌برداری سطحی دوبعدی در شرایط اجرایی است (بیس، 2008). در چنین مواردی، یک شرکت که آنها در شکستگی‌های نمونه‌برداری برای استفاده بهره‌مند، دو روانی از مورد مطالعه با توجه به ارتفاع دیواره گزارش گرفت (۵۷ متر) و توان اکتشافی سقف مغار (۴۳ متر) و همچنین نماینده شرکت در یک متر دیواره توان اکتشافی در نزدیک کف قابل بکار رفتن است. برای همه دسته‌های طول خط دردشت ۲۰۰۰ تا ۲۲۰۰ برای میانگین فاصله‌داری Arrowhead East Tunnel است. در مطالعه موردی تونل این مقدار برابر ۹ می‌باشد (کولاتیلاک؛ و همکاران، ۲۰۰۳). در همه بردشت‌های انجام شده تلاش شده است که توصیه و راهنمایی کلی برای دردشت ۲۵۰ تا ۳۵۰ درجه در هر زون نمونه‌برداری که دست کم نیمی از آنها

شکل ۳: موقعیت گازهای اکتشافی در سطح مقاله قرار گرفته و گازهای تزریق پیش داده آن به همراه موقعیت خطوط برداشت و نمونه‌برداری‌های سطحی (دایره‌ای و مستطیلی)

شکل ۴:الب: مراحل شستشو سطح تونل قبل از انجام عملیات برداشت دردسه پ) نمونه‌برداری دایره‌ای به قطر ۳ متر به همراه موقعیت خط برداشت

۳ Mandl
۱ Zhang
۲ Kulatilake
شکل (۵): گل قطب ناپوستگی‌های برداشت شده به همراه تعداد ناپوستگی‌های در هر دسته و راستای خطوط برداشت با استفاده از Dips (1). دایره با ضخامت کم: لایه‌ی زیرین، دایره با ضخامت متوسط: J، و دایره با ضخامت زیاد: J1.

وضیحت بیشترین و کمترین نش اصلی نسبت به شکستگی‌های برخی و کمکی در سمت راست شکل (۶) نشان داده شده است. نمودار بسیار پهنای محور عرضی نیروگاه و در نظر گرفتن مسافت پایداری آن، ۲۸ از این ادیس و HF در دو گمانه انجام شده است. بر این اساس راستای HTTPF بیشترین نش افقی بیشینه و کمکی و همچنین راستای مغز و کلیه سیستم ناپوستگی ارائه شده است. همانطور که در شکل مشخص است، دسته درجه‌های و از نوع برشی بوده و دسته درجه‌های BPJ از نوع کلی و مواد محور چین نیروگاه است. درجه‌های برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی درجه‌های کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین نیروگاه است. دردهای برخی با روند محور طاقدهس فرود پرتاب گسل رودرایر (شکل (۴)) سازگار بوده ولی دردهای کلی و مواد محور چین N130E

شکل (۶): راستای نش افقی بیشینه و کمکی (خطوط مستقیم ضخیم) همراه با راستای مدار (خط مستقیم نازک) و همراه سیستم ناپوستگی - راستای نش اصلی نسبت به شکستگی‌های برخی و برشی.

به علت وجود گسل‌های امتداد‌گری راستگرد و دارای مولفه مکوس، سیستم‌های کوه‌زایی جوان در حوزه‌های سیستم مطالعه و قرارگیری نیروگاه در زون کششی طاقدهس (به عقیده یکی از ساختارهای محلی، شکل (۵) سیستم شده است جهت تنش اصلی در منطقه، عمود بر جهت تنش غالب.
نتایج

جهت‌دار نابیوسکی

ارزیابی نابیوسکی‌ها و جهت‌داری آن‌ها از اکثر موارد یکی از مهم‌ترین خصوصیات توده زمین‌شناسی می‌باشد. این توده در زمین‌شناسی تحقیقات روبه‌روی آن وجود دارد. از نظر توده‌ای، جهت‌داری توده‌ها به‌طور معمول می‌تواند توسط قطعات و سطوح خطبردایش در دسترس باشد.

طلول نابیوسکی

طول یا طول‌شماری توده‌ای از مهم‌ترین خصوصیات توده سنگ است و این لایه و روش مطالعه قابل اعتماد برای انتخاب‌گذاری آن وجود دارد. کمی نمودن آن در بسیاری از مطالعات در حل‌های کلی، ممکن است به‌طور قابل توجهی گردد (وایکن، 1981). بنابراین، طول یا طول‌شماری توده در بهترین شکل‌ها نشان دهنده یا تغییرات در روش ساختار آن می‌باشد. ترکیب طول‌های اصلی و مهم‌ترین قدام در بررسی‌های توده‌ای قابل پذیرش است. به‌طوری‌که در بررسی‌های توده‌ای، می‌تواند به‌طور قابل توجهی اختلافات فیزیکی و شیمیایی در سطح لایه‌های مختلف بروز یابد. در اینجا، به بررسی یکی از مباحث مربوط به طول‌های اصلی و مهم‌ترین قدام در بررسی‌های توده‌ای اختصاص می‌دهیم.

روش خطبردایش

برای هر دسته نابیوسکی داده‌های طول نیم اثر با توجه به خط برداشت‌های مربوط به سطح مقطع می‌شود. این توسط با استفاده از تحقیقات برترین و دشوارانی (برنتون و ایسکندری، 1988) با توجه به محل قرارگیری خط برداشت و محدوده سطح برداشت در توان مورد مطالعه، و ضمیمه اولیت‌های نابیوسکی‌ها به سه حالت: هردو انتهای معلوم (نوع اول با 1)، یا انتهای در بالا یا پایین خط برداشت (نوع اول با 2) می‌تواند با بایگانی خط برداشت.

Wang
Brown
Dershowitz&Einstei
Kulatilake
Lei
Young
Torres
Baghbanan
جدول (3): مقادیر شبیه‌سازی اصلاح شده و نشانه‌های نهایی مقدار تابع توزیع و زاویه ρ

<table>
<thead>
<tr>
<th>انتخاب‌های ncr & %</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2</td>
<td>77</td>
</tr>
<tr>
<td>2-3 & 3-2</td>
<td>57</td>
</tr>
<tr>
<td>2-2</td>
<td>88</td>
</tr>
<tr>
<td>2-3 & 3-2</td>
<td>24</td>
</tr>
<tr>
<td>2-2</td>
<td>68</td>
</tr>
<tr>
<td>2-3 & 3-2</td>
<td>55</td>
</tr>
<tr>
<td>2-2</td>
<td>154</td>
</tr>
<tr>
<td>2-3 & 3-2</td>
<td>100</td>
</tr>
<tr>
<td>2-2</td>
<td>49</td>
</tr>
<tr>
<td>2-3 & 3-2</td>
<td>29</td>
</tr>
</tbody>
</table>

جدول (4): توزیع احتمال طول اثر از رتبه 1 تا 4 و مقدار آن بر حسب سنتی متر به تفکیک نوع نایوسنتی و نوع

<table>
<thead>
<tr>
<th>نوع</th>
<th>تابع چگالی احتمال</th>
<th>تعداد</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>لوک رمان</td>
<td>57</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>بوزیل</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>لوک رمان</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>بوزیل</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>لوک رمان</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>بوزیل</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

3 Kolmogorov-Smirnov
4 Pareto
5 Chi-Square
6 Anderson-Darling
بررسی خصوصیات نایپوستگی‌ها به منظور توییت مدل شبکه گسترشی ... 25

بر اساس نوع و ضعیت انتهای طول اثر اثر B.P.J توزیع‌های
ویبول و یکان‌روخت مناسب هستند. این نوع توییت کمتر بر
طول اثر گزارش شده است. با توجه به اینکه در طول اثر
سختی نکته اولی است B.P.J از نوع نایپوستگی کششی است. یکی از دلایل اصلی
مناسب بودن توییت ویبول می‌تواند رشد حاکم بر
منطقه مورد اطمینان باشد. با توجه به محوریت نیم‌پردازی
به روش خیاط برداشت و نیپرهای بای محدبی نیز باید سنجشی
کنونی نیست این نیم‌شکل را به احساسی نسبت به مهیم
دلایل این خصوصیت نایپوستگی باشد با تفسیر زمین‌شناسی
و آنالیز عدم قطعیت اصلی شد. با توجه به این‌که
محدود برداشت، خاطره‌های نایپر و بای بای بای با
نایپوستگی و کنونی شکل وجود دارد و باید صاحب خاک
طول اثر اندک از خاک کنونی شکل در طول خاکتست
به توجه به انباشت شده است. با توجه به نوع نباید
چگونگی احتمال و سطح کنونی برای تصحیح ارتب
نایپوستگی‌های نوی سوم، از روی n عدد کل نایپوستگی،
و هادسون (1981). در این روی n عدد کل نایپوستگی،
سطح کنونی شکل 3 عدد نایپوستگی های که طول
تیم اثر انها کمتر از مقدار 3 است. مقدار میانگین
کنونی برای و/و B.P.J به ترتیب برای با 300 و
و 400 سانتی‌متر محاسبه شده است. به همین ترتیب مقدار
میناگن و انحراف معیار طول اثر نایپوستگی‌های 1/و 1/و
به ترتیب 46 و 33 و 54.2 و 119 و 108 و 33 سانتی‌متر
محاسبه شده است. طبق مقیاس‌های دسته
ISRM درجه‌های 1/و زا/و نزدیک به مقادیر کم و دسته درجه‌های
B.P.J از نزدیک به مقادیر کم است. انداده‌گیری

روش پنج‌جره مرحله‌ای و دایره‌ای
برای محاسبه میانگین طول اثر نایپوستگی 10 پنج‌جره دایره‌ای
برداشت با نظری زیرگریز از اندام گروهی و فضاهای، ولی
سپیار کوچکتر از ابعاد محدوده نیم‌پردازی مورد نظری است
(روه‌های 2 و همکاران). برای محاسبه طول اثر
میانگین نایپوستگی‌های 1/و 1/و از 15 پنج‌جره مرحله‌ای
و

4 Kamali
5 Mauldon
6 Ferrero & Umili
7 Priest & Hudson
8 Curtailment
9 Rohrbaugh
شکل (8): میانگین طول اثر محاسبه شده به روش پنج‌وی‌ترای دو دسته درجه ۱ و ۲ به همراه مقادیر به دست آمده با استفاده از روش خرد‌پذیری و حداکثر نتایج (خطر زخمی)

در این مطالعه شکل نایپوستگی‌ها دارایی‌های فضایی شده است (کولاتلک، ۱۹۷۱ و همکاران، ۱۹۹۳) و خصوصیات طول اثر و قطع آن در ایل تابع توزیع پیکسون هستند. با توجه به مقایسه میانگین انحراف معیار و تابع چگالی احتمال طول اثر محاسبه شده برای چهار دسته نایپوستگی، مقادیر میانگین

و انحراف معیار قطع آن‌ها در جدول (۴) ارائه شده است.

فصل دوم نایپوستگی

فصل دوم، فصل دوم نایپوستگی‌های مجاور هم است. مقادیر فصل دوم برای توصیف محیط محلول پیوندهای پارامتر

ورودی چهت طبقه‌بندی اصلی سلکت، تقسیم و توصیف هندسه‌های بلکهای سنتی کاربرد دارد (مبتلی، ۱۹۷۱ و همکاران، ۱۹۹۳). در محدوده مورد مطالعه سه نوع فصل دوم شامل کل، فصل دومی هر دسته نایپوستگی در راستای خط پیوسته و در راستای بردار نرم متوسط نایپوستگی مورد بررسی قرار گرفته است. برای داده‌های فصل دومی خط انتخاب بهترین میانگین اختیار و رتبه‌بندی آن‌ها از سه آزمون و سه روش توضیح داده شده در قسمت روش خط پیوسته استفاده شده است. در جدول

(۵) بهترین توپولوژی احتمال از رتبه ۱ تا ۳ و مقادیر فصل دومی بررسی

اندازه (طول) نایپوستگی

اندازه (طول) نایپوستگی که به‌صورت گسترده سطح‌های

برای اندازه‌گیری قطع شکستگی وجود ندارد، گیم نموده

آن برای مشکل است. همچنین تیمین توزیع اندازه

نایپوستگی‌ها به‌صورت مشکل است. با توجه به عدم شناخت

کافی از شکل نایپوستگی‌ها، طول اثر درجه و تابع چگالی

احتمال ان در راستای شیب و امتداد پیکسون در نظر گرفته

می‌شود (روبرستون، ۱۹۷۱ و سانگ، ۱۹۷۲) الیت در

اين خصوص توانا علامت وجود ندارد.
جدول (5): پیشینی توابع توزیع احتمال فاصله‌داری از رتبه 1 تا 3 و مقدار فاصله‌داری (cm) به تفکیک نوع نابوپوسنتیک و نوع فاصله‌داری

<table>
<thead>
<tr>
<th>نوع نابوپوسنتیک</th>
<th>تابع گیجی احتمال</th>
<th>ضریب تغییرات</th>
<th>فاصله‌داری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>رتبه 1</td>
<td>رتبه 2</td>
<td>رتبه 3</td>
</tr>
<tr>
<td></td>
<td>نمایی</td>
<td>نمایی</td>
<td>نمایی</td>
</tr>
<tr>
<td>Normal</td>
<td>58</td>
<td>88</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>*</td>
<td>23</td>
</tr>
<tr>
<td>Normal</td>
<td>28</td>
<td>48</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Normal</td>
<td>17</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Normal</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

جدول (4): مقادیر میانگین و انحراف معیار طول اثر و قطر دسته دردها

<table>
<thead>
<tr>
<th>نوع</th>
<th>قطر (سانتی‌متر)</th>
<th>طول اثر (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C.O.V.</td>
<td>S.D.</td>
</tr>
<tr>
<td>Bed.</td>
<td>278</td>
<td>125</td>
</tr>
<tr>
<td>J1</td>
<td>348</td>
<td>59</td>
</tr>
<tr>
<td>J2</td>
<td>55</td>
<td>24</td>
</tr>
<tr>
<td>B.P.J.</td>
<td>240</td>
<td>40</td>
</tr>
</tbody>
</table>

و درجه اثر تغییرات

سانتی‌متر به تفکیک نوع نابوپوسنتیک و نوع فاصله‌داری ارائه شده است. مقدار فاصله‌داری گیجی از هیچ توزیع پیروی نمی‌نماید.

جدول 1 می‌تواند به شدت نابوپوسنتیک یکی از پایه‌های تحلیل آماری باشد. در مقاله‌های گذشته که شکستگی توده‌ای است (بیست و نه ساله، 1962). شدت دارای سه نوع خصوصیات (P₁₀، P₃₂، H) بوده که همگی دارای یک سطح سطحی (P₁₀) هستند. بنابراین با توجه به اهمیت نبودن جهت مباحث فاصله‌داری نرمال، تصمیم از این طریق با توصیه بریست (1962) انجام شده است. بنا بر این نتایج، دوچگانه احتمال را برای پیامد فاصله‌داری لگر نرمال و نمایی بوده ولی تابع ویبول و غامز نیز قابل کاربرد است (استاروپولو، 2014).

1 Stavropoulou
شکل ۹: شدت سطحی و قائمی دسته درجه ۹۰ درجهای J1 و J2

شکل جمجمه

برای شدت جمجمه نابیپوستگی با عمل با سطح شکستگی بر واحد حجم توده سنگ است. محاسبه شدت جمجمه نابیپوستگی با عمل با سیار مشکل

ارائه شده درجه ۹۰ و فرکانس کل

فرکانس با شدت خطي بکی از پارامترهای مهم برای کلپربره

کردن مدل شبکه شکستگی مجزا است. شدت خطي ساده‌ترین و رایج‌ترین نوع بوده و برای کل نابیپوستگی‌ها یا دسته نابیپوستگی‌ها به کار می‌رود (روه‌براق و همکاران، ۲۰۰۲). شدت خطي برای با تعداد شکستگی‌ها در واحد طول خطي بردارت است. با توجه به مقادیر محاسبه شده فاصله‌های فاصله‌ای، مقادیر شدت خطي به تکنیک دسته درجه ۹۰ (MNV) و خطي بردارت در جدول ۴ (آرائه شده این مقادیر فرکانس کل) λ، جهت دسته نابیپوستگی در جهت خطي بردارت (P26E) با استفاده از رابطه (۱) برای است (۵/۵ cm-۱) و همکاران، ۲۰۰۷

\[\lambda_\delta = \sum_{i=1}^{n} \lambda_i \cos \delta_i \left(90^\circ - \delta_i \right) \leq 90^\circ \quad (1) \]

در رابطه فوق، D، تعداد دسته نابیپوستگی، λ، فرکانس در جهت نرمال دسته نابیپوستگی لام، δ، زاویه حاده بين خط نمونبرداری و بردار نرمال دسته نابیپوستگی لام.

جدول ۴: مقادیر شدت خطي به تکنیک دسته درجه ۹۰ (1/cm)

<table>
<thead>
<tr>
<th>نوع</th>
<th>شدت (Along Scanline)</th>
<th>شدت (Along MNV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P.D.F.</td>
<td>P10</td>
</tr>
<tr>
<td>Bedding</td>
<td>لاغر نرمال</td>
<td>۲/۰۰</td>
</tr>
<tr>
<td></td>
<td>لاغر نرمال</td>
<td>۱/۰۷</td>
</tr>
<tr>
<td>J1</td>
<td>ویبول</td>
<td>۴/۰۶</td>
</tr>
<tr>
<td>J2</td>
<td>ویبول</td>
<td>۴/۰۶</td>
</tr>
<tr>
<td>B.P.L.</td>
<td>لاغر نرمال</td>
<td>۲/۰۰</td>
</tr>
</tbody>
</table>

شکل سطحی

شکل سطحی برای با طول اثر شکستگی بر واحد سطح نمونبرداری است (روه‌براق، ۲۰۰۲). به منظور محاسبه شدت سطحی (P32) در بردارت پنجره دایره‌ای به‌عنوان شدت واقعی، از رابطه ارائه شده توسط مولدن و همکاران

1 Mean Normal Vector
2 Total frequency
3 Jing
همجینی شدت حجمی کلیه نایبوسیگن‌ها به روش کولاتیلاک و همکران (1993) و دو نیروی و ایشنتی (1999) پژوهش‌های انجام شده در بررسی روش زانگ و نیز ایشنتی ۱،۹ و ۲۰ این ارائه شده است. همکاری محاسبه شده در این صورت می‌تواند به مقدار P روش کولاتیلاک و همکران با محاسبه P چگالی حجمی نیاز است. با توجه به اینکه فصل‌هایی در روز پژوهش‌های نیروی و ایشنتی در جدول (۷) برای شرایط اندازه‌گیری در مورد ذخیره به کار گرفته‌اند از اینکه نیروی و ایشنتی (20۱۵)، برای محاسبه چگالی حجمی از شدت خطی در جهت برابر نمرال میانگین استفاده شده است. نتایج شدت حجمی دسته‌های (MNV) در جدول (۲) به اینکه نیروی و ایشنتی به روش زانگ و ایشنتی در جدول (۷) در جدول ۷- شدت حجمی (m-۳) (دسته دزرهای ۱ و ۲) به نام نیروی و ایشنتی در موقعیت SWL2 و J1 و J2

<table>
<thead>
<tr>
<th>شکل (۱۰): پنجه نیروی و ایشنتی با به کار بردن SWL2 و SWL2 در موقعیت</th>
<th>J1</th>
<th>J2</th>
<th>نام نیروی و ایشنتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳</td>
<td>۲</td>
<td>SWR1</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td>SWL2</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td>SWL3</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td>SWGL1</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td>SWGL2</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td>SWP</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td>SWP3</td>
<td></td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>SWL4</td>
<td></td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>SWL5</td>
<td></td>
</tr>
</tbody>
</table>

۳ Einstein
1 Kulattlake
2 Zhang & Einstein
كه قابلیت است، همچنین تفاوت ۱۲ و ۱۱ درصدی بین چگالی واقعی دسته در زه‌های ۱ و ۲ در حال حاضر دارای و مستثنی‌ها به علت فاصله‌داری کمتر ۱ نسبت به ۲ است.

برای هر دو دسته در زه‌های مورد اشاره چگالی ظاهری به علت نامعلوم بودن انتهای اثر نایپوستگی، دارای مقدار بیشتر از چگالی واقعی جامعه آماری است. چگالی ظاهری به دلیل اثرات لبه به مقیاس وابسته است (مولدن و همکاران، ۱۹۹۹). در صورتی که ارزیابی‌های ارائه شده توسط مولدن و همکاران (۲۰۰۱) به مقیاس وابسته نیاوش، بهطور خودکار موارد نامعلوم بودن انتهای اثر نایپوستگی و ارتباط طول را تصحیح می‌نماید.

با این محتوای در جدول (۹) نشان داده شده است.

جدول (۹): درصد محدوده زیری به تفکیک نایپوستگی‌ها

<table>
<thead>
<tr>
<th>جریان</th>
<th>از</th>
<th>به</th>
</tr>
</thead>
<tbody>
<tr>
<td>جریان های کم</td>
<td>۰</td>
<td>۹۹</td>
</tr>
<tr>
<td>جریان های بزرگ</td>
<td>۱</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

پارامتری گرافیک فاصله عمودی جدایی دیواره‌های سنگی یک نایپوستگی با است که با آی آب پر شده است (پراوند، ۱۹۸۱). پارامتری از پارامتری‌های مؤثر برای بررسی نفوذ‌پذیری و هماقت هیدرولیکی توده سنگ است. این پارامتری نیز به روش‌های مستقیم و غیرمستقیم اندوزه‌گیری می‌شود. مقدار پارامتری با استفاده از روش‌های سوزنی، می‌شود.

در مورد شکل (۱۱): چگالی سطحی و ظاهری دسته در زه‌های ۱ و ۲

خط مکانیکی نایپوستگی‌ها

ضریب زیری نایپوستگی‌ها

ضریب زیری از خصوصیات مهم نایپوستگی در بررسی رفتار هیدرولیکی و مکانیکی توده سنگ است. روش‌های مختلف برای اندوزه‌گیری زیری سطح سنگ شامل روش‌های تماسی

۱ Ge
۲ Needle
بررسی خصوصیات نایپوستگی‌ها به‌منظور تولید مدل شبکه گسستگی

آموزه‌ها، آزمایش هیدرولیک، پرورش سنج لیزری، فتوگرامتری دیجیتالی و پرورش سنج سایسی‌های

اندازه‌گیری می‌شود (بریست، 1993). در این تحقیق از آن

فیلر گیری برای اندازه‌گیری این خصوصیات استفاده شده

است. با توجه به شستشوی سطح سنگ و تأمین روشنایی

مناسب سیم شده است تا حد امکان اثرات انفجار دار

اندازه‌گیری تأثیر نگذارد. مقادیر بازشگذی مکانیکی

اندازه‌گیری شده نایپوستگی‌های L, I پرودار و B.P.J,

به مطابق با ارائه شده توسط ISRM مورد استفاده به

نحو مشابه توسط نایپوستگی‌های موردنامه به ترتیب

مشابه‌مانده است. با توجه به ویژگی عرض، بسته، شکستگی‌های

کلیه نایپوستگی‌ها در معرض هوازدگی و آنتراسیون هستند.

هوازدگی بر روی بینار بازشگذی، نفوذ‌پذیری و ایجاد

شکستگی تأثیر می‌گذارد. در نایپوستگی‌ها مورد مطالعه

آثار تجزیه و خرد شدن در سطح دره و در مواد پرکنتنده

قابل توجه نیست. لذا بر اساس توصیفات ارائه شده توسط

ISRM نایپوستگی‌ها غير هوازدگی و 30/ کمی هوازدگی

شناسی است.

نتایج گیری

با توجه به همه بی‌پیش‌بینی مهی و نقض کلیدی نایپوستگی‌ها

در رفتار مکانیکی و هیدرولیکی تحت سنگ، بررسی

خصوصیات هندسی و مکانیکی نایپوستگی‌ها برای تولید

مدل‌های DFN بسیار ضروری است. در این مقاله برای

بررسی خصوصیات هندسی و فیزیکی نایپوستگی‌ها، مقال

4 shadow profilometry
5 Anderson-Darling
6 Kolmogorov-Smirnov
1 feeler gauge
2 vernier caliper
3 fluorescent dye
نهشته علمی-پژوهشی سد و نیروگاه برق آبی / سال سوم / شماره نهم

نیروگاه تلخه دخیلربای رودبار لرستان به عنوان مطالعه مورد مورد بررسی قرار گرفته است. براساس برداشت ۶۳۹ عده نابالغی در محدوده فاصله نیروگاه سد دز دره به همراه لایه‌ای مشخص شده است. از خصوصیات مهم منطقه مورد مطالعه می‌توان به فعالیت کوههای چوبی وجود گسل‌های فعال، استفراد نکتوینکی، گستره‌گی، و فشاری واریز نیروگاه در طول کشته طاقچیده اشاره نمود.

با توجه به زیرین تنش و تکثیری منطقه دو دسته دره از نوع کشته و دسته درده دایگری از نوع بریش هستند. با توجه به فراوانی کشک و زینتی نابالغی‌ها نیاز احتمال طول اثر و فاصله‌داری دره‌های درد در منطقه نیروگاهی برای کشک تغییر دارد. این موضوع نشان می‌دهد که فاقد ساختاری و شرایط تنش منطقه مورد مطالعه (فاکتور تنش محلی) بر روی تابع نیروگاه احتمال بااندازه‌های حساسیتی نسبی نیروگاهی برای بارگیرندگان این است. بر اساس اندازه‌گیری‌های انجام شده، پاسخ‌گویی دسته درده‌کشته ۳ بار برگیرنده از دسته درده‌بردار است.

شیوه تکتوینکی سبب شده است که مقدار ثابت لیتر سه دسته دریه پیام بیشتر مقدار ثابت لیتر لایه‌ای که در فاقد نهایی ایجاد شده است ۵۴ ایل درصد برگیرنده از سه دسته درده دیگر است. اختلاف طول اثر مگامیکین محاسبه شده بین دو روش خطی و سطحی برای دسته درده‌کشته ۱۰ و ارتباط سخت درصد است. همچنین توصیه می‌شود برای دسته درده‌کشته با طول اثر برگیرنده از یک متر شما دایره و اجداد سه پنجشی مستطیلی نمونه‌برداری به ترتیب حداکثر ۷۰٪ و ۱۸ در ۱۸ متر باشد.

مقدار شدت سطحی ظاهری توسط نگردهای مستطیلی و دایره‌ای به هم نزدیک بوده ولی بهتر است درد واقعی است. محاسبه شدت حجمی در منطقه سیبیار مشکل است. مطالبینه تایپ نیروگاهی درد ۷۱ درصد مقدار برای دسته درده‌کشته ۱۷ و ارتباط سخت درصد است. این مقدار تفاوت ۷ درصدی با توجه به ماهیت پارامتر موردی. مقدار نابالغی است. مقدار چگالی ظاهری بیشتر از چگالی واقعی و همچنین چگالی ظاهری بیشتر از دایره‌ای است. مقدار نابالغی به ترتیب متأثر از مقدار طول اثر و فواصل دارد. بنابراین، با توجه به اینکه مقادیر

Statistical Investigation of Discontinuity Properties to Generate Discrete Fractured Network -
Case study: Cavern of Rodbar Lorestan Pumped Storage Power Plant

Abbas Kamali Bandpey 1
Kourosh Shahriar ²
Mostafa Sharifzadeh ³
Parviz Marefvand ⁴

Abstract

Generating discrete fractured network (DFN) at the base of geometrical and physical characterizations of discontinuities is one the most important methods to study the discontinuity system effect on rock mass. In this paper characterizations of 639 discontinuities surveyed in powerhouse cavern of Rodbar Lorestan project have been studied by scanline and areal sampling methods. Based on the processes and corrections of bias types, one bedding and three joint sets were existed in the site. The tectonic activities and direction of principal stresses have caused differences in trace length and spacing characteristics and the probability distribution function of joint sets based on their genetic types. The calculated average trace length by scanline and areal method are very close for one joint set and for the other one the difference is 26%. The density differences between circular and rectangle sampling windows for joint sets J₁ and J₂ are 7% and 15%, respectively. The differences between actual and apparent intensity in circular sampling for joint sets J₁ and J₂ are 12% and 14%, respectively. Meanwhile, the volumetric intensity calculated by various methods have shown that the calculation of this characteristic is very difficult in the field.

Keywords

Discontinuity, Geometrical and Physical Characterizations, Cavern, Rodbar Lorestan Pumped Storage.

1 PhD. Student, Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran.
2 Professor, Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran.
3 Associate Professor, Department of Mining Engineering and Metallurgy Engineering, Western Australian School of Mines (WASM), Curtin University, Australia.
4 Associate Professor, Department of Mining Engineering and Metallurgy Engineering, Amirkabir University of Technology, Tehran, Iran.

Received: 2016/04/27
Accepted: 2016/07/26